بررسى دوبعدى عبور تك موج از روى صفحهى ناز ك عمودى با استفاده از روش سرعت
 تصويرى ذرات

1 - د دانشجوى كارشناسى ارشد، مهندسى مكانيك، دانشكاه صنعتى اصفهان، اصفهان
2 - استاديار ، مهندسى مكانيك، دانشكاه صنعتى اصفـانيان، اصفـان

Abstract

چچیده اطاعات مقاله مقاله پ夫وهشى كامل دريافت: 26 اسفند 1394 خذيرش: 07 ارديبيشت 1395 ارائه در سايت: 12 خرداد 1395 يك تک موج از روى آن پرداخته شده است. براى ايجاد تكى موج يكى موج ساز پيستونى ساخته شده و براى آشكارسازى جريان از روش غير تداخلى نورى PIV استفاده شده است كه بدون ايجاد اغتشاش در جريان قابليت اندازهگيرى سرعت سيال را دارد. بررسى الگَى جريان، مقادير علاوه بر اين شكل بدون بعد مؤلفه افقى سرعت در پشت مانع در لحظهى شكل گِّيرى لايه برشى استخراج شده و با حالتى كه جسم دارایى

\title{ تك موج }

كردابه بررسى عبور تك موج از روى موانع مغروق و مطالعلى الگوى جريان تشكيل شده در اطراف اين موانع، به دليل تأثير مستقيم بر شكل موج و ميزان تغييرات ايجاد شده در انرڭى آن اهميت بسيار زيادى دارد كه نمونهاى از كاربرد آن را مىتوان در طراحى موجشكنهاى سای ساحلى و ضخامت قابل توجهى باشل، مورد مقايسه قرار گرفته است.

Two-Dimensional Investigation of Solitary Wave passing over a Submerged Vertical Thin Plate with PIV Technique

Reza Zaghian, Mohammad Reza Tavakoli, Mehran Karbasipour, Mahdi Nili

Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran

* P.O.B. 8415683111, Isfahan, Iran, mrtavak@cc.iut.ac.ir

ARTICLE INFORMATION

Original Research Paper
 Received 16 March 2016
 Accepted 26 April 2016

Available Online 01 June 2016

Keywords:

Solitary wave
Vortex
Thin Plate
Wave maker
PIV

Abstract

The study of wave transmission over submerged obstacles and the flow pattern that forms around the obstacle has always been an important subject because of the direct affect on wave and the changes in wave energy that is crucial in the design of devices that absorb wave's energy and coastal breakwaters. In this research, the flow pattern induced by solitary wave passing over a submerged vertical thin plate has been studied. A wave maker piston has been used to generate the solitary wave and particle image velocimetry (PIV) technique has been used for flow visualization a technique that is non- introsire optic method, which can measure the fluid velocity with any changes in flow pattern. The study of the flow pattern visualization, velocity values and vorticity shows, at first, the flow separation shear layer forms and the clockwise vortex generate at the rear edge of the obstacle before the wave arrives at the barrier. Then the vortex grows in size and causes the water to move upward like a vertical jet on upstream. Then the fluid enters to the downstream and generates the counterclockwise vortex in this region, which is less than the first clockwise vortex in power which makes an important difference with the thick geometry researches. In addition, the non-dimensional horizontal components of fluid velocity at the time of shear layer formation at the rear edge of the plate have been studied and compared with the case that the barrier is rectangular. obstacle has always been an important subject because of the direct affect on wave and the changes in

1 -مقدمه
از كَشتههاى دور بررسى اثر برخورد امواج با موانع مختلف و تحليل الكَى

 بوده است. براى اندازهكيرى سرعت سيال از روشهاى عدیى و و تجربى مختلفى استفاده مىشود. اندازمگيرى تجربى سرعت سيال در حالت كلى به

همكاران مشابه كار چانگَ را انجام دادند، با اين تفاوت كه در پزوهش انجام انجام

 متوسط نوير -استوك ${ }^{4}$ و مدل اغتشاشیى

 هندسهى مستطيلى با ضخامتهاى متى متفاوت يكسان است وري و اين مرين منحنى

سرعت را بر روى معادلهاي بدون بعد برازش كرد [14].

 ايجاد شده در دو طرف صفحه به حركت در مىآيد [15]. لذا اطلاع از

 نورى سرعتسنجى تصويرى ذرات استفاده شده است. با با انجام اين آزين مايش

شده است.

2 -بستر آزمايش تجربى
 1-2 - شرايط كانال و دستگًاه موج ساز

براى انجام اين آزمايش از يك كا ارتفاع 120 سانتىمترى از سطح زمين قرار گرفته استفاده شار شده است. اين
 دانشگاه صنعتى اصفهان طراحى و ساخته شده است. براى ايجاد موج، يك
 ارتفاع آب ساكن كانال در نظر گرفته شده است. در "شكل 1" ابعاد كانال و و إن

 عرض (B) آن است، در جدول 1 مشخص شده است. مطابق مرجع [8] براى

[^0]هستند كه علاوه بر اندازءگيرى پارامترهايى نظير سرعت، توانايى آشكارسازى جريان را نيز دارند.
 شكست موج ايجاد نمى شود و در نتيجه آشفتگى كمترى در در اطر اطراف مانع مانع ايجاد

 گيرى سرعت سيال هم از روش سرعتسنجى تصويرى ذرات أ استفاده شده

است [2].
در پ夫وهششهايى با موانع غير استوانهاى، محل قرار گيرى مانع مغروق غالبا

 پر داخت و آنها را با ها هم مقايسه كرد. هدف چن مشا

 همكاران انجام شد كه مطابقت بسيار خوبى با كار آر انجام شده توسط چی
 حفره در هنگام عبور يك تك موج پرداختند. آنها با با استفاده از روش سرا سرع

 [5]. هندسهى مستطيل به دليل سادگى و كاربرد بسيار در تعداد زيادى از

 عبور يك تك موج از روى يكى مكعب مستطيل با نسبت اريت ارتفاع مانع به عمق 0.7 پرداختند. آنها ابتدا با روش سرعتسنجى تصويرى ذرات، آزمايش

 مشاهدات آنها نشان داد كه قدرت تردابهى تشا تشكيل شده در جلو مار ماني مستطيلى تقريبا با كردابهى تشكيل شده در عقب مانع برابر است [8]. يانو و
${ }_{2}^{1}$ PIV
${ }_{2}$ Drag

Fig. 1 Schematic channel conditions and the location of the barrier in tests

$$
\text { شكل } 1 \text { شماتيك شرايط كانال و محل قراررگيرى مانع در آزمايش }
$$

با توجه به اينكه از مقطع وسط كانال تصويربردارى مىشود، فاصلهى لنز دوربين تا محل تصويربردارى حدودا 25 سانتىمتر است. زمان تصويربردارى از لحظهى حركت موج ساز تا لحظهى رسيدن موج به انتهاى كانال است. بعدازاين زمان به دليل اثرات موج بر گشتى نتايج آزمايش داراى اعتبار نيست. براى مشخص كردن زمان رسيدن موج به انتهاى كانال از سنسورهاى موج نعار ساخت شركت آكامينا5 استفاده شده است [19]. البته سرعت موج و
 انتهاى كانال يكى جاذب موج هم قرار داده شده تا انرزثى موج را تخليه كند آند و سريعتر شرايط ساكن را در آب كانال ايجاد كند. جهت بیعبدسازى زمان مطابق مراجع [12,11] از رابطهى (4) استفاده شده است. $t^{*}=t \sqrt{\frac{g}{h}}$

 رسيدن موج و زمانهاى مثبت لحظات بعد از عبور موج از روى مان مانع را نشان

 مطابق "شكل 1" از چپ بی به راست است.

 سرعت با استفاده از اين كد، توسط عكسهناى معيار بررسى شري شده است [20].
 صحتسنجى شده است [21]. در "شكل 2" مىتوان نمونهاى از تصوير
 شكل سمت چֶ (a) تصوير گرفته شده با استفاده از آز آمايش سرعتسنجى

 پردازش تصوير و تحليل شكل (a) نمايش داده شده است. لازم به ذكر است

[^1]$\operatorname{Re}=\frac{U h}{v}$
كه در آن v ويسكوزيته ديناميكى سيال، h ارتفاع آب ساكن و U نمايانگر سرعت است كه از رابطهى (2) محاسبه میشود.
$U=\frac{u_{m} h}{h-D}$
در رابطهى (2) براى محاسبهى تك موج است، مىتوان از رابطهى (3) استفاده كرد، كه در اين رابطه، g شتاب گرانش است.
\[

$$
\begin{equation*}
u_{m}=\frac{H}{h} \sqrt{g(h+H)} \tag{3}
\end{equation*}
$$

\]

به اين ترتيب مقدار عدد رينولدز هم با توجه به دادههاى جدول 1 قابل محاسبه خواهد بود.

2-2-2 نحوهى انجام آزمايش
در روش سرعتسنجى تصويرى ذرات به سيال مورد استفاده ذاراتى با ابعاد ابـاد بسيار كوچک، اضافه شده و رديابى مىشود. اين ذرات بات بايد دارای خواص مخصوصى باشند كه بتوانند از ديناميك سيال پیيروى كنند. اساس اين اين روش

 مى گردد. با تحليل اين عكسها برا بردارهاى سرعت سيال بهد آن آي

 وسط كانال روشن مىسازد تا بتوان اين ذرات را را بهخوبى دنبال كر كا
 طولموج 532 نانومتر و توان 9 وات استفاده شده است ليزر 5 ميلىمتر است و به كمك يك لنز استوانهاى ساخت شركت اديم ادموند ${ }^{3}$ بنور به يكى صفحه با ضخامت در حدود 1 ميلىمتر و عرض 12 سانتىمتر تبديل شده است [17]. همحنين فاصلهى محل قراركيرى ليزر از كف كانال 50
 پرسرعت نوع CMOS ساخت شركت آلمانى PCO با سرعت 450 فريم بر ثانيه و كيفيت تصويرى 1024 × 1280 پيكسل انجام شده است [18 دوربين مورد استفاده نيكون 50 ميلىمترى با با عدد كانونى 1.8 بود 128 بوده و فاصلهى، لنز دوربين از ديواره كانال حدودا 10 سانتىمتر است.

جدول 1 شرايط در نظر گرفته شده براى آزمايش
Table 1 Conditions intended to test

نماد	واحد	مقدار	پارامتر
h	m	0.26	ارتفاع آب ساكن
H	m	0.09	ارتفاع بيشينه موج
c	m/s	1.84	سرعت تئورى موج
D	m	0.13	ارتفاع مانع
L	m	0.004	ضخامت مانع
B	m	0.3	عرض مانع
Re	-	329189	عدد رينولدز

[^2]بررسى قرار مى گيرد. اما براى بهتر بيان شدن نحوهى شكل گيرى جريان در
 بحث قرار گرفتتهاند. با حركت موج ساز و تشكيل موج، جريان تودمى سيال جلوتر از از موج سطحى ايجادشده حركت مى كند. در اين لحظات يعنى قبل از زمان رسيدن

 نوى مانع لايهى برشى تشكيل مىشود و مقدمات تشكيل يكى كرداردابى

 است. در "شكل 5" هم مؤلفههاى قائم و افقى سرعت در در مقاطعى مورد بررسى قرار گرفته است. اما با كَشت زما زمان و عبور موج از از روى مانع، مكانيزم انتقال انرزى گردرابه به پخش افزايش شعاع مى كند [8].

 حالت مانع نازك تشكيل نمىشود. با مقايسهى سرعت در دو دو مقطع نزديكى به مانع در پشت جسم (x/h=0.1 و حركت رو به جلوى گردابه به خوبى قابل مشاهده است. مطابق "شكل 5" 5

Fig. 3 Flow pattern around an obstacle in time $t^{*}=-2.21$
$t^{*}=-2.21$ شكل 3 الگوى جريان اطراف مانع در لحظهى

[^3]به دليل اين كه نور ليزر از كف كانال تابيده مىشود، در قسمت بسيار كوچكى در بالاى مانع به دليل ايجاد سايه و تغيير در روشنايى نور باعث بروز خطا در
 ناپيوستگى اندكى در شكل بردارها نشان مىدهد.
بررسى تكرارپذيرى آزمايش از اهميت بسيار زيادى برخوردار است است براى بررسى اين مسئله اين آزمايش 3 بار در شرايط مشابه تكرار شده است. از از لحاظ الگوى كلى آشكارسازى و مشاهدهى جريان ${ }^{1}$ تكرارپذيرى آز آمايشى با
 جهت بررسى كمى تكرارپذيرى سرعت سيال، 4 مقطع در فواصل 2 سانتىمترى و 4 سانتىمترى در جلو و عقب مانع مشخص شدهاند و مؤلفههاى افقى و عمودى سرعت در 200 نقطه بر روى اين مقاطع و در چهار زمان مختلف در هر سه آزمايش به دست آورده شده است و مورد مقايسه قرار گرفتهاند. بهعنوان نمونهاى از برر سى هاى انجام شده براى تكرارپذيرى آزمایش و درى بهتر آن مؤلفههاى افقى و عمودى سرعت براى زمان مان مشان t t^{*} = - 0.08 فاصلهى 2 + سانتىمترى از مانع در قسمت پيوست ترسيم شده است. در پيوست 1 مؤلفهى افقى سرعت و در پییوست 2 مؤلفهى عمودى سرعت براى هر 3 آزمايش نشان داده شده است. در نهايت اختلاف مقادير سرعتها براى هر 200 نقطه و هر سه آزمايش در هر حالت محاسبه شده است و خطاى تكرارپذيرى بهصورت ميانگين در همهى حالتها مورد بررسى
 تكرارپذيرى مطلق در حدود (m/s) 0.0095 است كه با توجه بهسرعت جريان سيال و وجود عواملى چون مغشوش بودن جريان مقدار بسيار قابل قبولى

3 -نتايج بر رسى الگوى كلى جريان اطر اف مانع

در اين قسمت نتايج الگوى جريان در مختصات بدون بعد ترسيم شدهاند، كه براى بىبعد كردن ابعاد طولى از ارتفاع آب در وضعيت ساكن (h) استفاده
 جريان به نوعى آشكارسازى جريان است و بيشتر محل تشكيل گردابه انـ مورد

Fig. 2 Sample of output results, a) Image taken from tests b) After Image Processing
شكل 2 نمونه خروجى نتايج a) تصوير گرفته شده از آزمايش b) بعد از پردازش تصوير

[^4]

Fig. 7 Vertical and horizontal velocity component at time $t^{*}=1.2$ seconds in the specified section

شكل 7 مؤلفه قائمم و افقى سرعت در لحظهى t"=1.2 در مقاطع مشخص
گردابه در لحظهى رسيدن موج به مانع در ناحيهى بسيار كوچكى متمركز بوده و اثرات آن هنوز به 0.2 د 0.2 نرسيده و و تغييرات سرعت در اين اين ناحيه

 چس از عبور موج از روى مانع مومنتم در بالاى كَ كردابه كاهش يانی يافته و

 موج، كردابه شروع به افزايش شعر شعاع و كسترش در در اطراف ماف مانع مى كندن.

 مى آيد از يك طرف به كف كانال محدود شده و از طرفى بر بـى با مانع مواجه شـي شده و بهنایار به سمت بالا حركت مى كـند
 "شكل 8" در قسمت پشت مانع كاملا قابل مشاهده است. همچֶنين افزايش مؤلفه قائم سرعت در "شكل 9" در مقاطع پشت مانع نشاندهند اندهى جت عمودى تشكيل شده در پشت مانع نازی است. اما در اسر بالادست مانع، پس از از

 پإييندست مانع، تشكيل شده و مقدارى از سيال را با بآرامى وارد برى بخش
 جلوى مانع (بالادست) مىشود. گردابهى جديد تشكيل

 بهطور كلى حركت هر دو گر دابه به سمت سطح آزان سين سيال قابل مشاهده انـ است.
 اطراف موانع مستطيلى [8-11] خود را بيش از هر حيز پـيز در اين قسمت نشان
 گردابهى پشت مانع به صورت بسيار ضعيفى وجود دارد كه نمونهاى از آن را را
 گردابه بر روى سطح بالايى مستطيل در لحظات ابتدايى، مانع از تأثير جريان

Fig. 4 Flow pattern around an obstacle in time $t^{*}=-0.06$
$t^{*}=-0.06$ شكل 4 الگوى جريان اطراف مانع در لحظهى

Fig. 5 Vertical and horizontal velocity component at time $t^{*}=-0.06$ seconds in the specified section شكل 5 مؤلفه قائم و افقى سرعت در لحظهى 0.06-t = در مقاطع مشخص

Fig. 6 Flow pattern around an obstacle in time $t^{*}=1.2$

Fig. 10 Stream line at the moment of the formation of two vortices at time $t^{*}=3.68$

$$
\text { شكل } 10 \text { خطوط جريان اطراف مانع در لحظهى شكلگیرى دو گردابه در زمان }
$$

جهت مقايسهى قدرت دو گردابه، مقدار سيركولاسيون ¹ اطراف گردابهها محاسبه شده است. با توجه به اينكه مقدار ورتيسيته² از مؤلفههاى سرعت بهدست آمده از آزمايش سرعت سنجى تصويرى ذرات استخراج شده است، با انتگرالگيرى از آن در يكى محيط بسته مطابق رابطهى (5)مىتوان مقدار
سير كولاسيون (Г) را محاسبه نمود.
$\Gamma=\oint \omega d A$
كه در رابطهى (5)، ω ورتيسيتهى سطح مشخص شدهى اطراف گردابه است. لازم به ذكر است كه لحظهى تشكيل اين دو گردابه از نظر زمانى يكسان نيست. در "شكل 11" مقدار قدر مطلق سيركولاسيون اين دو گردابه از زمان تشكيل تا زمان رسيدن به قدرت بيشينه مورد مقايسه قرار گرفته است. همانطور كه مشاهده مىشود مقدار قدر مطلق بيشينه سير كولاسيون تشكيل

Fig. 11 Absolut value circulation of clockwise vortex from formation time until the maximum vortex strength

شكل 11 قدر مطلق سير كولاسيون گردابهى ساعت گرد و پادساعتگرد از لحظهى تشكيل تا لحظهى رسيدن به قدرت بيشينه

[^5]

Fig. 8 Flow pattern around an obstacle in time $t^{*}=3.6$
$t^{*}=3.68$ شكل 8 الگوى جر يان اطراف مانع در لحظهى

Fig. 9 Vertical and horizontal velocity component at time $t^{*}=3.68$ seconds in the specified section

$$
\text { شكل } 9 \text { مؤلفه قائم و افقى سرعت در لحظهى t"=3.68 در مقاطع مشخص }
$$

بررسىهاى انجام شده نشان مىدهد كه دو گردابهى تشكيل شده در موانع مستطيلى ضخيم، از نظر زمان تشكيل و هم از نظر قدرت (سيركولاسيون
 يكسان هستند [8]. براى اين كه بتوان، محل دو گردابه را بهتر مشاهده كرد خطوط جريان در حوالى گردابهها در زمانى كه دو گردابه در دو سمت مانع تشكيل شدهاند، ترسيم شده است. همانطور كه مشاهده مى شـود، مطابق "شكل 10" در زمان تشكيل گردابهى پادساعتگرد، گردابهى ساعت گرد اوليه به شعاع نسبتا قابلتوجهى رسيده است. نكتهى قابل ذكر ديگر اين است كه همانطور كه قبلا اشاره شد جهت حركت گردابهها به سمت بالا بوده و به نظر میرسد با استناد به مرجع [7] كه در آن نسبت ارتفاع مانع به ارتفاع آب ساكن مطابق پ夫وهش انجام گرفته برابر 0.5 است، اگر طول كانال
 فراموش كرد كه اين مسئله تحت تأثير نسبت ارتفاع مانع به ارتفاع آب ساكن است. چنانحه ارتفاع مانع زياد بوده و به سطح آب نزديك باشد گردابهى ساعت گرد تحت تأثير موج قرار گرفته و به سمت كف كانال ران حركت مى كندن،
 نسبت D/H = 0.8 مشاهده كرد [9].

15 تا شكل "17 ترسيم شداند. بهطوركلى به غير از لحظات ابتدايى مشاهده مىشود كه روند تغييرات كه البته اين تغييرات به صورت خطى نمى مباشند. همچحنين مطابق انتظار با با
 يافت و حاصل تفاضل آنها بهنوعى با زمان كنترل مىشود. در نتيجه اين

Fig. 12 The pattern of horizontal component of velocity in shear layer formation time [12]

شده توسط گردابهى ساعت گرد، تقريبا 3 برابر گردابهى پادساعتگرد است كه

است.
بررسى نيروى پساى وارد بر اجسام مستطيلى با زمان نشان میدهد كه مه در
 اين نيروى پسا به دليل جهت پرخش

 بالادست مانع، نيرويى در جهت حرد حركت موج (مثبت) به مانع وارد كرده و
 پديده از مههمترين تأثيراتى است كه تشكيل كردابه بر جريان اطراف مانع خواهد گذاشت.

4 -بررسى مؤلفه افقى سرعت در لحظهى شكل گيرى لايه برشى

 موانع مستطيلى پيشنههاد كرد كه در "شكل 12" قابل مشاهد إلـده است و نشان داد كه براى دو ضخامت متفاوت اين پروفيل يكسان است [12 د12]. با توجه به
 ابتدايى در مستطيل ضخيم و صفحهى نازى بـى به بررسى و مقايسهى اين

 مختصاتى) و در هر مقطع براى 6 زمان (*) مختلف مؤلفي 6 مألفى افقى سرعت محاسبه شده است. بديهى است كه حون برشى در پشت مانع است، مقاطع نزديك به مانع و زمانها قبل از زمان رسيدن موج به مانع انتخاب شده است. در نـايت ديت با با انجام اين روند نمودارهايى مطابق "شكل 13" و "شكل 14" ايجاد مىشود كه نشاندهندي مانى

 مقادير عددى، شكل كلى پروفيل سرعت در مقاطع و زمانهای مانى مختلف تا

"شكل 12" دارد.

با تعريف پارامترهاى معرفى شده توسط لين مىتوان اين نمودارها بدون بعد كرد [12]. براى اين منظور مطابق "شكل 12"، اءر بيشينهى مؤلفه افقى سرعت و محل آن در مقطعى پشت مانع بـ به تر تر تيب سرعت كمينه
 مؤلفههاى افقى سرعت در مقاطع پشت مانع را بدون بعد كرد. $\xi=\frac{y-y_{\text {max }}}{b}$
$U_{n}=\frac{u-u_{\text {min }}}{u_{\text {max }}-u_{\text {min }}}$
 هستند. پارامترهاى روى "شكلهاى 13 و 14" قابل دستيابى است. بدين منظور كافى است محل
 تغييرات اين سه پارامتر در زمانها و مقاطع مختلف در پشت مانع در "شكل

$$
\begin{equation*}
U_{n}=\left[\tanh \left(c_{1} \cdot \xi+c_{2}\right)+1\right] \cdot\left\{c_{3}-c_{4} \cdot \cos \left[c_{5} \cdot\left(\xi+c_{6}\right)\right] \cdot e^{-\xi}\right. \tag{8}
\end{equation*}
$$

 با معادلهى (8) انجام شده است و ضرايب ثابي آبت آن در جد

 براى صفحهى نازک در حالت عمودى همه، صادق خواهد بود بارد.

5 -نتيجه كيرى

در اين پزوهش عبور يك تك موج آب از روى يك صفحهى نازک قائم با استفاده از آزمايش سرعتسنجى تصويرى ذرات مورد بررسى قرار كرفت و وري مهمترين نتايج بهددست آمده به شرح زير است است

 ضخيم در تشكيل گردابهى پادساعت گرد در بالا دست بوده در در حالى كه در

Fig. 18 Non dimensional horizontal velocity profile in different time and section at the rear edge of the obstacle

شكل 18 پروفيل بىبعد سرعت افقى در مقاطع و زمانهاى مختلف در پشت مانع جدول 2 مقايسهى ضرايب معادلهى 8 در آزمايش انجام شده در اين پثوهش و مراجع [14], [12]
Table 1 Comparison the constant of equation 8 between this study and reference [12], [14]

مانع نازك	مستطيل با پیهناى زياد [14]	مستطيل با پههناى	پارامتر
0.0910	2.7238	1.63	C_{1}
0.9071	2.9873	1.5032	C_{2}
0.2645	0.4617	0.2799	C_{3}
-0.5021	0.0481	14.7156	C_{4}
-0.003	-1.7244	0.0187	C_{5}
69.03	30.719	145.94	C_{6}
0.978	0.988	0.979	R^{2}

Fig. 15 The changes in $y_{\text {max }}$ with time at different section
شكل 15 تغييرات ymax بازمان در مقاطع مختلف

Fig. 16 The changes in b with time at different section
شكل 16 تغييرات b بازمان در مقاطع مختلف

Fig. 17 The changes in $u_{\text {max }}$ with time at different section
شكل 17 تغييرات ${ }^{17}$ با زمان در مقاطع مختلف
با بدون بعد كردن محورهاى سرعت و مكان از طريق روابط (6) و (7)
 چشت مانع تقريبا از يكى مسير عبور مى كنند. اين نمودار بدون

 استفاده شده است. معادلهى پيشنهادى لين برای اين پروفيل در پشت اج اجسام مستطيلى بهصورت معادلهى (8) است.

Appendix. 1 Compare the horizontal component of speed in the 3 tests at $t^{*}=-0.08$ and $\frac{x}{h}=0.15$

$$
\frac{x}{h}=0.15 \text { و t t* = - }
$$

Appendix. 2 Compare the vertical component of speed in the 3 tests at $t^{*}=-0.08$ and $\frac{x}{h}=0.15$

$$
\frac{x}{h}=0.15 \text { و t t* = - } 2.08 \text { } 2 \text { مقايسه مؤلفه عمودى سرعت در } 3 \text { آزمايش در }
$$

8 -مر اجع

[1] C. Chian, R. C. Ertekin, Diffraction of solitary waves by submerged horizontal cylinders, Wave Motion, Vol. 15, No. 2, pp. 121-142, 1992.
[2] G. A. Zarruk, E. A. Cowen, T. R. Wu, Vortex shedding and evolution induced by a solitary wave propagating over a submerged cylindrical structure, Journal of Fluids and Structures, Vol. 124, No. 1, pp. 742-749, 2015.
[3] C. Y. Chen, An experimental study of stratified mixing caused by internal solitarywaves in a two-layered fluid system over variable seabed topography, Ocean Engineering, Vol. 34, No. 14, pp. 19952008, 2007.
[4] C. M Hsieh, R. R. Hwang, J. R. Hsu, M. H. Cheng, Numerical modeling of flow evolution for an internal solitary wave propagating over a submerged ridge, Wave Motion, Vol. 55, No. 1, pp. 48-72, 2015.
[5] C. H. Chang, C. J. Tang, C. Lin, Vortex generation and flow pattern development after a solitary wave passing over a bottom cavity, Computers \& Fluids, Vol. 53, No. 1, pp. 79-92, 2012.
[6] C. J. Tang, J. H. Chang, Flow separation during solitary wave passing over submerged obstacle, Journal of Hydraulic Engineering, Vol. 124, No. 7 ,pp. 724-749, 1998.
[7] C. J. Huang, C. M. Dong, On the interaction of a solitary wave and a submerged dike, Coastal Engineering, Vol. 43, No. 3, pp. 265286, 2001.
[8] K. A. Chang, T. J. Hsu, P. L. Liu, Vortex generation and evolution

هندسههاى ضخيم يك گردابه بر روى سطح بالايى مستطيل و يكى گردابه در

 مىشود كه لزوما داراى قدرت يكسان نيستندي
 برابر قدرت گردابهى پادساعتگرد در در جلوى آن است. عالاوهبر اين تشكيل گردابهى پادساعتگرد به دليل محل تشكيل و جهت نيروى پسا منفى ناشى از گَردابهى پادساعت گرد در زمانههاى بعد از عبور موج مىشود.
4- بررسى الگوى مؤلفهى افقى سرعت در زمانهای اوليه در پشپ پشت مانع

 معادلهى معرفى شده براى مستطيل ضخيم [12] با دقت بالا و ضريب ركرسيون 0.978 برازش مىشود.

6 -فهرست علائم

(m) عرض مانع
(m) فاصلهى بين محل سرعت بيشينه و نصف آن b

ض
D ارتفاع مانع (m) D
(ms ${ }^{-2}$) شتاب گرانش
(m) H

ارتفاع آب ساكن (m) h
(m) L

عدد رينولدز Re
;
(ms ${ }^{-1}$) مؤلفه افقى سرعت $\quad u$
(ms ${ }^{-1}$) مؤلفه عمودى سرعت v
(m) مختصات طولى (
(m) مختصات عرضى y

	علائم .يونانى
لزجت ديناميكى (kgm ${ }^{\text {(1) }}$	μ
ورتيسيته (s)	ω
لزجت سينماتيكى	v
سير كولاسيون (m² ${ }^{\text {m }}$	Γ
مكان بدون بعد	ξ
	بالانويسها
بدون بعد شدهى پارامتر اصلى	*
	زيرنو.يسها
بيشينه	m
بيشينه	max
كمينه	min
بدون بعد شده	n

($\mathrm{kgm}^{-1} \mathrm{~s}^{-1}$) لز $\quad \mu$
(${ }^{-1}$ (${ }^{-1}$ رتيسيته
(m² ${ }^{-1}$) لز
(m² si ${ }^{-1}$ سيركولاسيون
\% مكان بدون بعد شده
بالانويسها
*
زيرنويسها
بدون بعد شده n

Conference on Offshore Mechanics and Arctic Engineering, Hamburg, Germany, June 4-9, 2006.
[15]C. F. Ferguson, Submerged Pressure Differential Wave Energy Converter, PhD Thesis, Department of Faculty of the Physics, California Polytechnic State University, San Luis, 2011.
[16]Hollow glass spheres and silver-coated hollow glass spheres, Dantec Dynamic company, Accessed 10 march 2006; http://www.dantecdynamics.com/seeding-materials.
[17]Yag laser LWGL532-130112 model, Beijing Laserwave Optoelectronics Tech company, Accessed 22 january 2005; http://www.pco.de/scmos-cameras .
[18]CMOS camera 1200 h model, PCO company, Accessed 8 may 2008; http://www.laser-wave.com/EN/products_show.aspx.
[19] Wave height gauge AWP-24-3 model, Acamina company, Accessed 15 april 2001; http://www.akamina.com/AWP-3003.html.
[20] W. Thielicke, E. J. Stamhuis, Affordable and accurate digital particle image velocimetry in MATLAB, Journal of Open Research Software, Vol. 2, No. 1, pp. 30-31, 2014.
[21] Gh. Taherian, M. Nili-Ahmadabadi, M. Zabetian, M. Karbasipour, Two-dimensional investigation of free convection flow around a heated horizontal cylinder immersed in water using PIV technique, Journal of Solid and Fluid Mechanics, Vol. 4, No. 1, pp. 107-117, 2014. (in Persian فارسى)
in water waves propagating over a submerged rectangular obstacle: Part I. Solitary waves, Coastal Engineering, Vol. 44, No. 1, pp. 13-36, 2001.
[9] Y. T. Wu, S. C. Hsiao, Z. C. Huang, K. S. Hwang, Propagation of solitary waves over a bottom-mounted barrier, Coastal Engineering, Vol. 62, No. 1, pp. 31-47, 2012 .
[10] K. S. Hwang, Z. C. Huang, H. H. Hwung, K. A. Chang, Unstable vortices induced by solitary waves propagating over a rectangular barrier, Proceedings of The 10th Asian Symposium on Visualization, Andhra Pradesh, India, April 10, 2009.
[11] M. Y. Lin, L. H. Huang, Vortex shedding from a submerged rectangular obstacle attacked by a solitary wave, Journal of Fluid Mechanics, Vol. 651, No. 1, pp. 503-518, 2010.
[12]C Lin, T. Y. Ho, S. C. Hsieh, K. A Chang, Laboratory observation of solitary wave propagating over a submerged rectangular dike, Journal of Engineering Mechanics, Vol. 132, No. 5, pp. 545-554, 2006.
[13] F. Zhuang, J. J. Lee, A viscous rotational model for wave overtopping over marine structure, Proceedings of The 25th International Conference on Coastal Engineering, Orlando, U. S. statec, September 2-6, 1996.
[14]C Lin, T. Y. Ho, S. C. Hsieh, K. A Chang, Characteristics of vortex shedding process induced by a solitary wave propagating over a submerged obstacle, Proceedings of The 25th International

[^0]: ${ }^{3}$ Volume of Fluid
 ${ }^{4}$ Reynolds-averaged Navier-Stokes Equations
 ${ }^{5}$ Shear layer
 ${ }^{6}$ Plexiglass

[^1]: ${ }_{6}^{5}$ Acamina
 Acamina
 ${ }^{6}$ Matlab

[^2]: ${ }_{2}^{1}$ Dantec
 ${ }^{2}$ Beijing
 ${ }^{3}$ Edmund
 ${ }^{4}$ Complementary Metal Oxide Silicon

[^3]: ${ }_{3}^{2}$ Convection
 ${ }^{3}$ Diffusion

[^4]: ${ }^{1}$ Visualization

[^5]: ${ }^{1}$ Circulation
 ${ }^{2}$ Vorticity

